

UNIT 5 PERIODIC TABLE and BONDING

- 1. The periodic table
- 2. Why do atoms bond
- 3. Types of substances
- 4. Atomic mass
- 5. Molecular mass
- 6. The mole

1. THE PERIODIC TABLE

In the periodic table the elements are arranged by increasing their atomic number so H is the first element because it has an atomic number of one, then on its right we have He which has an atomic number of two..

	Gro	bup		1	н										Group			⁴ He
	1	Ш		1 1 hydro									III	IV	V	VI	VII	Z helium
2	⁷ ₃ Li	⁹ ₄ Be											¹¹ 5 ⁵	¹² 6	¹⁴ 7N	¹⁶ 80	¹⁹ ₉ F	²⁰ Ne
	lithium	beryllium											27 Al	²⁸ Si	³¹ P	oxygen 32 S	^{35.5} Cl	40 Ar
3		²⁴ Mg 12 magnesium				The tra	ansitio	n elem	ents				13 aluminium	14	15 ^r phosphorus	16 sulfur	17 chlorine	18 argon
4	³⁹ K 19	⁴⁰ Ca 20	⁴⁵ ₂₁ Sc	⁴⁸ Ti 22	⁵¹ ₂₃ V	⁵² 24	⁵⁵ ₂₅ Mn	⁵⁶ ₂₆ Fe	⁵⁹ Co	⁵⁹ Ni 28	⁶⁴ 29Cu	50	⁷⁰ Ga	⁷³ Ge	⁷⁵ As	⁷⁹ Se	⁸⁰ Br	⁸⁴ Kr 36
	⁸⁵ ₃₇ Rb	calcium	scandium 89 V	titanium 91 7 r	93 Nb		99 42 TC	¹⁰¹ Ru	¹⁰³ Rh	^{nickel}	^{copper} ¹⁰⁸ Ag 47	¹¹² Cd	gallium	¹¹⁹ Sn	¹²² Sb	¹²⁸ Te	bromine	¹³¹ Xe
5	37 ND	38 strontium	39 yurium	⁹¹ Zr 40 ^{zirconium}		42 molybdenum	45	44 ruthenium	45 rhodium	46 palladium	47 ⁹ silver	48 cadmium	49 indium	50 tin	51 antimony	52 tellurium	53 iodine	54 xenon
6			¹³⁹ La				¹⁸⁶ Re	¹⁹⁰ Os 76	¹⁹² lr 77 lr	¹⁹⁵ Pt 78	¹⁹⁷ Au 79	²⁰¹ Hg	²⁰⁴ Tl 81	²⁰⁷ Pb	²⁰⁹ Bi	²¹⁰ Po	05	86
7	²²³ Fr 87	²²⁶ Ra 88	²²⁷ AC 89	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
	francium	radium	actinuim		140 -	141-	144	1470	1500	152-	157 cd	159 Th	162	165	167	169 -	173 1	175
		Lar	nthanio	des	cerium	D9 praseodymium	neodymium	147 61 promethium	samarium		G4Gd	65	66 dysprosium	67 Ho	68 erbium	69 thutium	70 ytterbium	71 Iutetium
			Actinio	des	²³² Th 90 thorium	231 91 protactinium	238 92 uranium	²³⁷ Np 93		²⁴³ Am 95	²⁴⁷ Cm 96 curium	97 Bk	²⁵¹ Cf 98 califormium	252 99 Es einsteinium	257 Fm 100 fermium	258 101 mendelevium	102 NC	262 103 lawrencium

As the atomic number increases the number of electrons also increases. The important thing about the electrons is how they are placed around the nucleus. They are arranged in different energy levels and that is what determines their chemical behaviour.

The horizontal rows in the periodic table are called periods.

The vertical columns are called groups.

All the elements in the same group have similar properties and all the elements in the same period have electrons placed in similar energy levels.

We classify all the elements in two groups: metals and non-metals.

Metals are the elements on the left side of the red line.

In the picture you can see where they are placed.

The name of the groups are:

Alkali (alcalinos)

(Acalino térreos) (Térreos) (Carbonoideos) (Nitrogenoideos) (Anfígenos)

Halogens (Halógenos)

Noble gases (Gases nobles)

The noble gases are very stable, because they have eight electrons in the outer shell and this gives them a great stability.

2. WHY DO ATOMS BOND

Atoms tend to join together to become more stable. For that reason, the majority of atoms, except those of the noble gases, are joined to other atoms forming chemical bonds.

Elements bond together to make substances (Both simple substances and compounds). Atoms bond with each other in order to gain a stable arrangement of outer-shell electrons, like the noble gases group does.

This means that they bond to have 8 electrons in their outer shell. This is called the octet rule.

The three main types of bonding are:

Ionic bonding

Covalent bonding

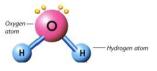
Metallic bonding

Substances can form different structures:

- Molecules, are aggregates formed of a small, fixed number of atoms.
- Crystals, are aggregates formed of a large, variable number of atoms, ions or cations which are ordered in space.

3.TYPES OF SUBSTANCES

MOLECULES


<u>Atoms that form this type of strucure</u>: Non metal with non metal, they can be the same atoms (Cl_2) or different atoms (H_2O)

How do atoms bond: They bond by the electrons shared among the atoms.

They share one or more pair of electrons

<u>Structure</u>:

As two or more specific atoms join, they form molecules

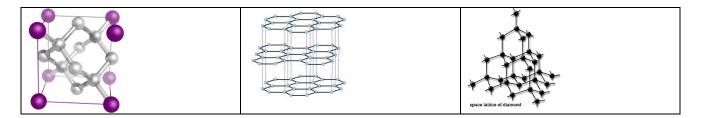
Properties of molecules:

- Low melting and boiling points, most of them are gases, many are liquids and a few are solids.
- They don't conduct heat nor eletricity.
- The ones which are solids are soft.

Examples: Cl₂, CO₂, H₂O....

Language:

Most Many A few


COVALENT CRYSTALS

<u>Atoms that form this type of structure</u>: Non metal with non metal they can be the same atoms (Diamond C) or different atoms (Si O_2)

How do atoms bond: They bond by the electrons shared among the atoms.

They share one or more pair of electrons

<u>Structure</u>: Covalent lattice, with differents arrangements, depending on the substance. A covalent lattice is a regular repeating arrangement of ATOMS in the solid

Properties of covalent crystals:

• All of them are in the solid state.

Examples: SiO2, C-graphite, C-diamond

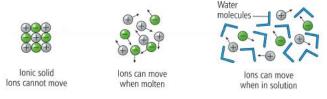
IONIC CRYSTALS

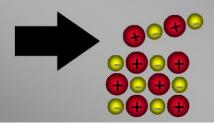
Atoms that form this type of bond : Metal and non metal

<u>How do atoms bond</u>: This bond is made by the electron transfer between the metal and the non metal atoms.

The metal loses electrons, and becomes a cation.

The non-metal gains the electrons that the metal loses and becomes an anion.


Ions stick together strongly because of electrostatic forces and they make an ionic substance.


<u>Structure</u>: Ionic lattice, with differents arrangements, depending on the substance. An ionic lattice is a regular repeating arrangement of IONS in the solid.

Properties of ionic compounds:

• They conduct electricity when they are melted or dissolved, because conducting allows the charges to move. When they are in the solid state the ions are locked in place. Ionic solids are insulators.

- They have high melting points because of the strong forces between ions.
- Ionic solids are brittle because, when we make a force in them strong repulsion breaks crystal apart.

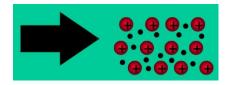
Examples: NaI, BaS, KCl, BaCl_{2...}

METALLIC CRYSTALS

Atoms that form this type of bond: Metals with themselves.

<u>How do atoms bond</u>: This bond is formed by the collective electron sharing among all the atoms.

<u>Structure</u>: Metallic lattice. A metallic lattice is a regular repeating arrangement of CATIONS in a "sea" of electrons shared between all the cations and they are free to move.


0.0	0.	0	0.
00	O	Ø	0
0 , Ó.	0	0	.o
0.0	0	Ö	0

Properties of metallic crystals:

High melting points

Malleable and ductile: It means that they can be pressed and moulded into sheets and into wires respectively, because the electrons allow atoms to slide by.

Good conductors of heat and electricity, because they have free electrons in the lattice.

Typically they are shiny. (They shine)

When they mix with other metals they don't bond they became a mixture called an alloy (aleación).

Examples: Mg, Cu, Fe...

4.ATOMIC MASS

It has the same value as the relative atomic mass but stated in uma.

Atomic mass is the average of all the isotopes of an element. The unit to express this magnitude is uma.

It is approximately equal to the mass of a single proton or neutron.

Chemists have defined the carbon-12 atom as having a mass of 12 atomic mass units. So 1 μ uma = 1/12 the mass of a Carbon-12 atom.

5.MOLECULAR MASS

It is the mass of a molecule.

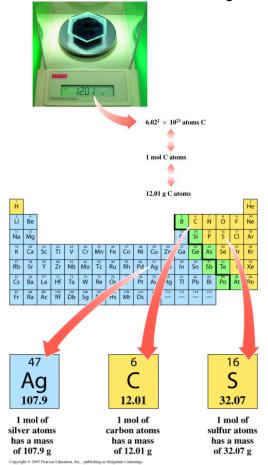
It is calculated by adding the atomic masses of all the atoms that build the molecule stated in uma.

6.AVOGADRO'S NUMBER, the mole

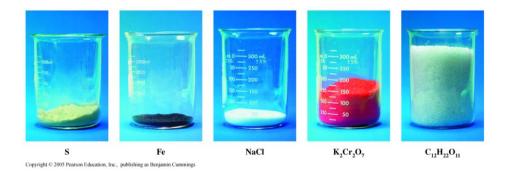
A mole of any substance contains 6,022.10 $^{\rm 23}$ particles. This number is called Avogrado's number.

These particles can be molecules or atoms (or ions), it depends on what substance we are dealing with. If it is an element the particles are atoms, whereas if it is a compound the particles are molecules.

In both cases we represent the number of particles with the letter N. Avogadro's number is represented with the letter N_A

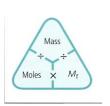

N= n . N_A

7.MOLAR MASS


It is the mass of one mole of an element or compound. It is represented by ${\bf M}$

It has the same value as the atomic mass or molecular mass but stated in grams. The molar mass of an atomic substance is the atomic mass stated in grams. The molar mass of a compound is the molecular mass stated in grams.

As you can see one moles of different substances have different volumes and different mass. The only thing that all of them have in common is the number of particles, N_A . In all cases this number is 6,022.10²³.


The molar mass of a compound is the sum of the molar masses of the atoms in the formula. *Example*: Calculate the molar mass of $CaCl_2$.

Atom	Number of Moles	Atomic Mass	Total Mass
Ca	1	40.1 g/mole	40.1 g
CI	2	35.5 g/mole	71.0 g
			111.1 g

n = m/M

Amount of substance

You can convert mass into moles, or moles into mass using the formula:

The magnitude **amount of substance** is represented with the letter **n** and its unit is **mole**.

A molar mass factor and Avogadro's number convert

mass to particles.

molar mass Avogadro's number mass > mole > particles

$$n = m/M$$

N= n.N_A

Mass (m)

_____ ↓_____ Mole (n) m= n.M

Atoms Particles (N) Molecules Ions

n=N/N_A

GLOSSARY

bonding	/ˈbɒndɪŋ/
brittle	/ˈbrɪtl/
column	/ˈkɒləm/
ductile	/ˈdʌktaɪl/
group	/ˈgruːp/
halogens	/ˈheɪləʊdʒənz/
lattice	/ˈlætɪs/
malleable	/ˈmælɪəbl/
mole	/ˈməʊl/
molecule	/ˈmɒlɪkjuːl/
noble gases	/ˈnəʊbl 'gæsɪz/
period	/ˈpɪərɪəd/
periodic table	/piəriˈɒdɪk ˈteɪbl/
row	/ˈrəʊ/
crystalline	/ˈkrɪstəˌlaɪn/

UNIT 5 ACTIVITIES

A1- ABC dictation. (act 1.13 Teaching others subjects through English, Deller & Price, Oxford) Take an A-4 sheet of paper and cut it into four rectangular pieces .

Write on the top one letter A, B, C or D. The teacher will tell you which one.

Put a number on the left from one to four.

The teacher will read a text and you have to write it when she says your letter.

.....

Sit with three students (groups of four) that have different letters but the same number and exchange your information .

What do you find in common? What is the name of the topic?

Let's listen to the whole texts and check your writings.

A2-Using the periodic table data, write :

- a) The relative atomic mass of a He atom
- b) The atomic mass of a Be atom
- c) The relative molecular mass of a molecule of CO2
- d) The molecular mass of a molecule of water
- e) The atomic mass of a C atom

f) The relative molecular mass of a NH3 molecule.

A3- Questions to answers (5.10 Teaching other subjects through English, Deller&Price, Oxford).

There you have several answers. You have to write the question for each answer.

It is 12 u

It is 14

It is 16 g

Arranged in molecules.

Doesn't conduct electricity when solid but it does when liquid.

They are formed by metal and non-metal atoms.

They conduct electricity because in their lattice there are free electrons

A4- How many moles are made of 5,4.10²⁰ molecules?

How many molecules are there in 3 mole?

A5- What is the proper unit to calculate the mass of one mole?

Calculate the mass of 2 mole of H2

What is the proper unit to calculate the mass of one molecule?

Calculate the mass of 3 molecules of Cl2

What do we have to do to calculate the mass of a number of molecules in grams?

Calculate the mass in grams of 4,7.10²¹ molecules of water

A6- If we have 45 g of O2. How many moles of oxygen do we have?

If we have 45 g of oxygen. How many molecules of oxygen do we have?

A7-If the odor of $C_6H_{10}S$ can be detected from 2 x 10^{-13} g in one litre of air, how many molecules of $C_6H_{10}S$ are there?

A.8-How many H_2O molecules are in 24.0 g H_2O ?

loud (DON'T WRITE) the following sentences with the substances: BeC12 Li С K(OH) CI2 Mg AI HF 1 atom of has a mass of uma 1 molecule of has a mass of uma 6,022 x 10²³ atoms of have a mass of g 6,022 x 10²³ Molecules of Have a mass of g 1 mole of has a mass of g

A.9-Look up in the periodic table the relative atomic masses that you need, and repeat out

A10- Answer the following five questions:

Calculate the number of moles are made of 8×10^{23} particles.

Calculate the number of particles that are in 2 moles.

Calculate the number of moles that are made of 64 g of O_2 ($A_rO = 16$)

Calculate the mass of four moles of H_2 (A_rH=1)

Calculate the number of moles that are made of 12 g of H_2 (A_rH=1)

UNIT 5 EXERCISES

1		these words:							
	electrostatic energy forces high ionic negative								
	In giant structures the attractive between the positive and ions are very strong. Ionic compounds have very melting points and boiling points because it takes a lot of to overcome these forces.								
2	Copy and complete using the words below:								
	attraction delocalised energy high melting mobile positive								
	In metallic bonding the metal ions are held together by a sea of electrons. The strong electrostatic between the ions and the electrons gives many metals their strength. Because it takes a lot of to overcome these strong electrostatic forces the and boiling points of most metals is								
3	State whether the following pairs of elements form ionic or covalent compounds when they combine: (a) sodium and chlorine (b) hydrogen and oxygen (c) hydrogen and chlorine (d) lithium and chlorine (e) sodium and iodine								
4	The table shows some properties of different substances.								
	substance	melting point/°C	conductivity of solid	conductivity of liquid	solubility in water				
	A	-56	does not conduct	does not conduct	insoluble				
	В	610	does not conduct	conducts	soluble				
	C	-70	does not conduct	does not conduct	insoluble				
	D 2310 conducts conducts insoluble								
	E	680	does not conduct	conducts	soluble				
	Classify each	of these substance	s as metals, giant ionic	structures or simple mo	lecular structures.				
5	Which o	ne of these st	atements about	the					
	covalent	compound c	arbon monoxide	e is true?					
	A It dis	solves in wate	er.						
		s a low boilin							
		nducts electric							
	D It has a high melting point.								

6	Potassium chloride, KCl, has a giant ionic structure but methane, CH_4 , is a simple molecule.	
	(a) State three differences between the physical properties of potassium chloride and methane.	
7	Match each type of structure and bonding with the descript	ion:
	Covalent the solid cond	ucts electricity
	Ionic has a high met conducts elect dissolves in wa has a low met does not conduct	ricity when it ater ing point and
8	How many moles of atoms are there in 72 g of magne	sium2(An-24)
0	What is the mass of 0.1 moles of carbon atoms? (Ar=	
		12)
9	How many moles are there in 27 g of water, formula $H_2O_{\rm P}$ (,	Ar H- 1; Ar O- 16)
10) How many atoms are there in 3 mole of Cu?	
11	How many moles are there in 7,5 \times 10 ²⁴ atoms of Mg?	
12	2 What is the mass of 2 mole of Fe atoms ?	

13	How many moles of K are there in 145 g of K?
14	How many molecules are there in 2,5 mole of BeI2?
15	How many moles are there in 6 x 10 ²⁴ molecules of MgO?
16	What is the mass of 3 mole of H_2S ?